This article was downloaded by: On: 28 January 2011 Access details: Access Details: Free Access Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Physics and Chemistry of Liquids

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713646857

Temperature Dependence of Dielectric Constant in Light and Heavy Water

^a Physics Department, University of Roorkee, Roorkee, India

To cite this Article Dass, Narsingh(1986) 'Temperature Dependence of Dielectric Constant in Light and Heavy Water', Physics and Chemistry of Liquids, 15: 4, 323 – 326

To link to this Article: DOI: 10.1080/00319108608078493

URL: http://dx.doi.org/10.1080/00319108608078493

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material. Phys. Chem. Liq., 1986, Vol. 15, pp. 323-326 0031-9104/86/1504-0323\$18.50/0 © 1986 Gordon and Breach Science Publishers, Inc. Printed in the United Kingdom

Letter

Temperature Dependence of Dielectric Constant in Light and Heavy Water

NARSINGH DASS

Physics Department, University of Roorkee, Roorkee 247 667, India.

(Received October 25, 1985)

It is shown that the two-state approach of water is quite successful in representing the correct temperature dependence of dielectric constant in case of light and heavy water.

The continuum theory of Onsagar¹ predicts a value of dielectric constant of water as 35 at 0°C whereas its true value is almost 88. But, the continuum theory is capable of describing accurately the behaviour of nonassociating polar liquids even with higher dipole moment than water. This may be due to the fact that the water molecules are associated by hydrogen-bond which in turn produces strong correlation between the individual molecules and thus may enhance the total polarization.

A number of theoretical calculations, based on molecular models, have been done regarding the temperature dependence of dielectric constant in water. Essentially, all these models assume that the hydrogen bonding enhances the orientation polarization while the distortion polarization is being expressed as n_D^2 where n_D is the refractive index of water corresponding to the sodium line.

Oster and Kirkwood² assumed a free rotation about hydrogen-bond and considered the interaction between the central molecule and the first shell of the nearest neighbours. Haggis *et al.*³ modified this model and proposed water structure consisting of a statistical assembly where each water molecule is considered to be bonded to four-, three-, two-, one- and no other water molecule. The water molecules are allowed to pass from one form to another with the help of breaking and forming of hydrogen-bonds.

On the other hand, Lennard-Jones and Pople⁴ assumed a considerable amount of bending in place of the breaking of hydrogen-bonds. This model

was further extended by (i) Harris and Alder⁵ who included the polarization resulting from the distortion of the molecules due to the electric field and (ii) Harris⁶ who included the fluctuation effects on the molecular dipole moment. All the models discussed have a little success.

Thus, it is rather interesting to note that till today no theory of the dielectric constant in case of H_2O and D_2O is available which can predict correctly the temperature dependence of it.

The purpose of the present paper is to show that the two-state approach^{7,8,9,10} is quite successful in representing the temperature dependence of dielectric constant in H_2O and D_2O . The other Physical properties of water like ultrasonic absorption,¹¹ NMR chemical shift¹² viscosity¹³ and refractive index¹⁴ have already been reported as successfully calculated on the basis of this approach.

From the two-state point of view, water is considered as a mixture of twospecies, namely, an open-packed and a closed-packed structure, in equilibrium at all temperatures. Thus, the volume of water, V_w , in equilibrium on this approach is given as

$$V_{w} = X_{0}V_{0} + X_{c}V_{c} \tag{1}$$

where X_0 , V_0 and X_c , V_c are mole fraction and molar volume corresponding to open-packed and closed-packed species, respectively. Moreover, X_0 and X_c are related by $X_0 + X_c = 1$.

Recently, Mitra *et al.*¹⁴ have developed a relation for the refractive index of water, n_w , on the basis of two-state approach and is given as:

$$n_{w} = (X_{0}V_{0}n_{0} + X_{c}V_{c}n_{c})/V_{w}$$
⁽²⁾

where n_0 and n_c are the refractive index of open-packed and closed-packed species, respectively.

Equation (2) can be easily transformed to

$$(n_w - 1)V_w = X_0 K'_0 + X_c K'_c \tag{3}$$

on the basis that both n_0 and n_c follow Gladstone Dale¹⁵ relation, that is,

$$n_0 - 1 = K'_0 / V_0$$
 and $n_c - 1 = K'_c / V_c$ (4)

In Eqs (3) and (4), K'_0 and K'_c are the temperature-independent constants.

To prove that Eq. (4) obeys the additive law of polarizibility, we rewrite Eq. (4) in term of polarizibility, α that is

$$n_0 - 1 = 4\pi N \alpha_0 / V_0$$
 and $n_c - 1 = 4\pi N \alpha_c / V_c$ (5)

Where N is the Avogadro's number. Now, substituting Eq. (5) into Eq. (2), we get the additive law, that is,

$$(n_w - 1)V_w = 4\pi N(X_0 \alpha_0 + X_c \alpha_c)$$
(6)

Hence, Eqs (3) and (4) can be written in term of dielectric constant, ε , and are given as:

$$(\varepsilon_w^{1/2} - 1)V_w = X_0 K_0 + X_0 K_c \tag{7}$$

$$(\varepsilon_0^{1/2} - 1) = K_0 / V_0 \tag{8}$$

and

$$(\varepsilon_c^{1/2} - 1) = K_c / V_c \tag{9}$$

where K_0 and K_c are new temperature-independent constants and are to be determined from the experimental data.

To calculate the temperature dependence of ε_w of H₂O and D₂O, we need the values of X_0 , X_c , V_w and ε_w . The values of X_0 and X_c are taken from Davis and Litovitz⁹ in case of H₂O and from Davis and Bradley¹⁰ in case of D₂O. The values of V_w and ε_w for both the liquids are taken from Handbook of Physics and Chemistry.¹⁶ The values of K_0 and K_c computed by least square fit are reported in Table I.

Once the values of K_0 and K_c become available then the values of ε_w can be easily calculated. The calculated values of ε_w so obtained in H₂O and D₂O are reported in Table I along with the experimental data. On comparison, it is found that the calculated values of ε_w are in very good agreement with the

TABLE I

Dielectric constant as a function of temperature in H_2O and D_2O H_2O D_2O

T°C	H ₂ O				D_2O			
	ε ₀	ε	e _w (calc.)	ε _w (exptl.)	εο	ες	ε _w (calc.)	ε _w (exptl.)
0	98.54	63.22	88.04	87.90	_		_	
5	—		-		95.61	65.20	85.934	85.480
10	97.00	59.66	84.18	83.95	94.55	62.95	83.599	83.526
20	95.10	56.82	80.31	80.18	92.58	60.00	79.698	79.755
30	93.09	54.71	76.56	76.58	90.29	57.68	75.967	76.161
40	90.63	52.78	72.98	73.15	87.74	55.70	72.448	72.735
50	88.19	51.25	69.57	69.88	84.96	54.01	69.080	69.470
60	85.59	49.91	66.43	66.76	82.13	52.58	65.953	66.358
70	82.84	48.61	63.54	63.78	79.15	51.21	63.071	63.391
80	80.11	47.48	60.83	60.93	76.17	50.01	60.431	60.561
90	77.41	46.44	58.37	58.20	73.16	48.90	57.954	57.554
100	74.86	45.53	56.08	55.58	70.19	47.83	55.710	55.278
K _o	10.17				9.19			
K _c	5.25				4.85			

experimental data in case of both the liquids. The maximum discrepancy found is $\pm 0.5\%$ in H₂O and $\pm 0.8\%$ in D₂O. However, we have also reported the values of ε_0 and ε_c in these liquids by taking the values of V_0 and V_c from Refs 12 and 13.

Thus, we can conclude from the present study that the two-state approach is quite successful in representing the correct temperature dependence of the dielectric constant in the case of H_2O and D_2O .

References

- 1. L. Onsager, J. Am. Chem. Soc., 58, 1486 (1936).
- 2. G. Oster, and J. G. Kirkwood, J. Chem. Phys., 11, 175 (1943).
- 3. G. H. Haggis, J. B. Hasted, and T. B. Buchanan, J. Chem. Phys., 20, 1452 (1952).
- 4. J. Lennard-Jones, and J. A. Pople, Proc. Roy. Soc., 205A, 163 (1951).
- 5. F. E. Harris, and B. J. Alder, J. Chem. Phys., 21, 1031 (1953).
- 6. F. E. Harris, J. Chem. Phys., 23, 1663 (1955).
- 7. G. Wada, Bull. Chem. Soc. Japan, 34, 955 (1961).
- 8. G. Nemethy, and H. A. Scheraga, J. Chem. Phys., 36, 3382 (1962).
- 9. C. M. Davis, and T. A. Litovitz, J. Chem. Phys., 42, 2563 (1965).
- 10. C. M. Davis, and D. Bradley, J. Chem. Phys., 45, 2461 (1966).
- 11. L. Hall, Phys. Rev., 73, 775 (1948).
- 12. N. Muller, J. Chem. Phys., 43, 2555 (1965).
- 13. F. Franks, and W. Good, Nature, 210, 85 (1966).
- 14. S. K. Mitra, Narsingh Dass and N. C. Varshneya, J. Chem. Phys., 57, 1798 (1972).
- 15. J. H. Gladstone, and J. Dale, Phil. Trans., 153, 317 (1863).
- 16. Handbook of Physics and Chemistry, Ed. R. C. Weast, C. R. C. Press, Inc., U.S.A. (1974).

326